Learning Human-Aware Path Planning with Fully Convolutional Networks

نویسندگان

  • No'e P'erez-Higueras
  • Fernando Caballero
  • Luis Merino
چکیده

This work presents an approach to learn path planning for robot social navigation by demonstration. We make use of Fully Convolutional Neural Networks (FCNs) to learn from expert’s path demonstrations a map that marks a feasible path to the goal as a classification problem. The use of FCNs allows us to overcome the problem of manually designing/identifying the cost-map and relevant features for the task of robot navigation. The method makes use of optimal Rapidly-exploring Random Tree planner (RRT∗) to overcome eventual errors in the path prediction; the FCNs prediction is used as cost-map and also to partially bias the sampling of the configuration space, leading the planner to behave similarly to the learned expert behavior. The approach is evaluated in experiments with real trajectories and compared with Inverse Reinforcement Learning algorithms that use RRT∗ as underlying planner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Driving Like a Human: Imitation Learning for Path Planning using Convolutional Neural Networks

Human-like path planning is still a challenging task for automated vehicles. Imitation learning can teach these vehicles to learn planning from human demonstration. In this work, we propose to formulate the planning stage as a convolutional neural network (CNN). Thus, we can employ well established CNN techniques to learn planning from imitation. With the proposed method, we train a network for...

متن کامل

Soft Value Iteration Networks for Planetary Rover Path Planning

Value iteration networks are an approximation of the value iteration (VI) algorithm implemented with convolutional neural networks to make VI fully differentiable. In this work, we study these networks in the context of robot motion planning, with a focus on applications to planetary rovers. The key challenging task in learningbased motion planning is to learn a transformation from terrain obse...

متن کامل

Fully Context-Aware Video Prediction

This paper proposes a new neural network design for unsupervised learning through video prediction. Current video prediction models based on convolutional networks, recurrent networks, and their combinations often result in blurry predictions. Recent work has attempted to address this issue with techniques like separation of background and foreground modeling, motion flow learning, or adversari...

متن کامل

Value Iteration Networks

We introduce the value iteration network (VIN): a fully differentiable neural network with a ‘planning module’ embedded within. VINs can learn to plan, and are suitable for predicting outcomes that involve planning-based reasoning, such as policies for reinforcement learning. Key to our approach is a novel differentiable approximation of the value-iteration algorithm, which can be represented a...

متن کامل

Cone Detection using a Combination of LiDAR and Vision-based Machine Learning

The classification and the position estimation of objects become more and more relevant as the field of robotics is expanding in diverse areas of society. In this Bachelor Thesis, we developed a cone detection algorithm for an autonomous car using a LiDAR sensor and a colour camera. By evaluating simple constraints, the LiDAR detection algorithm preselects cone candidates in the 3 dimensional s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018